
Leveraging React Native,
WebRTC, and OpenSIPS
to develop cross-platform
softphone applications

00:08

MuteTransfer

John Doe
818-256-698

818-256-698
Local Time 8:45 AM

User

Add
+

MuteRecordTag CRM

Whitepaper

The Abstract

Building a Softphone for a mobile platform is a tedious job. It requires access to

native APIs, which need to use native languages for developing and maintaining

applications for each platform. In the past few years, react native and WebRTC

have evolved and now have capabilities to develop cross-platform softphone

applications. There are some limitations of react native and WebRTC which can

be resolved with OpenSIPS. Here, we will dive deeper into all the open-source

libraries which work on top of React Native and WebRTC, along with OpenSIPS

that can be leveraged to develop such applications.

Introduction

WebRTC and React Native have gained major traction in a couple of years, but

they have some limitations that need to be addressed. This paves the way for

OpenSIPS, which can be used to develop Softphones for mobile applications

with all the more diverse features.

Problem Definition

A few techniques why React Native and WebRTC are taken as a first approach

are: React Native code is reusable, cost-e�ective, there can be live reloading,

high development speed, and most importantly, it is easy to learn.

Similarly, WebRTC has a secure voice and video calls-making ecosystem; data

can be shared, the technology tweaks itself per any network conditions, and it

is platform & device-independent.

However, there are certain limitations of React Native and WebRTC while

developing softphones for mobiles. This white paper targets to delve deeper

into the technology and provides a solution for this subject with OpenSIPS

technology.

01

High-Level Solution

Technology Stack and Architecture:

OpenSIPS is a diverse and multipurpose signaling server. SIP is the most widely

used protocol in VoIP, and OpenSIPS is accepted as a leader in VoIP platforms

based on SIP. The whole VoIP ecosystem is now shifting towards IP and

telephony is estimated to be revamped in the next decade. SIP has ushered

this revolution, and it is one of the primary protocols of the next generation.

The following diagram shows the best-fit approach to how OpenSIPS enables

the development of softphones and makes calls.

In more depth, OpenSIPS can translate wss to TCP/UDP, etc., before relaying it

to PBX when it receives a register request from App. Android and iOS will not

allow an application to run forever to save battery.

uac_registrant registers on behalf of the application and stays registered even

if the application itself is not registered with opensips

When OpenSIPS receives a call from PBX, it can send a push notification to

wake up the application and deliver the call.

02

Solution Details

Registration Flow :

As a gateway OpenSIPS always stays registered with PBX. This way App does

not have to stay registered with PBX all the time. When OpenSIPS receives

registration request from App , the following happens :

OpenSIPS will authenticate the registration request

If authentication is successful , It will save location of App in its database

OpenSIPS will send registration request to PBX on behalf of App with the help of

uac_registrant module

x-sip-proto
x-rtp-type

Expires 3600

Insert new registrant entry
in uac_registrant table

Opensips (uac_registrant)
registers with PBX on

behalf of App

Run reg_enable viami_http

Save Location

Register

200 OK

200 OK

PBX

Register

Re - register

200 OK

App

After Registeration expiry (i.e 3600 seconds)

03

Un-Registration Flow :

Opensips (uac_registrant)
un - registers with PBX on

behalf of App

Run reg_disable via
mi_http

Un - register

200 OK

200 OK

PBX

Un - register

App

Call Flow :

This diagram describes the call flow where the App is in killed mode and hence

not registered but as OpenSIPS always stays registered with PBX , PBX does

not have to care about it. When PBX wants to send call to App and if application

is not registered then following happens :

OpenSIPS will received Invite from PBX

OpenSIPS will not find location of App in its database , hence it will know that App is killed

OpenSIPS will send PUSH notification to wake up application

App wakes up on receiving PUSH notification , it will send register request to OpenSIPS

Register request sent by App notifies OpenSIPS that application is awake and reachable

Finally OpenSIPS forwards Invite packet to application and hence call gets delivered to

the App

04

PBX
rtpengine

INVITE

OpenSIPS sends
push notification as

APP is not registered

100 Trying

180 Ringing

200 OK

ACK

RTP/SRTP/DTLS-
SRTP

In dialog Req/ Response

BYE

200 OK

PUSH

REGISTER

INVITE

180 Ringing

200 OK

ACK

DTLS-SRTP

BYE

200 OK

In dialog Req/ Response

App recieves the
call and says

running till it is
in foreground

App Wakes up
and registers

App is not running
and hence not

registered

FCM/APNS
App

Application Anatomy

In this diagram we can see various components involved on the App side.

05

Push notifications :
 React-native-callkeep - iOS CallKit framework and Android Connection

 Service for React Native

 https://github.com/react-native-webrtc/react-native-callkeep

Call Control :
 React-native-incall-manager - Handling media-routes/sensors/events

 during a audio/video chat on React Native

 https://github.com/react-native-webrtc/react-native-incall-manager

WebRTC
 React-native-webrtc - The WebRTC module for React Native

 https://github.com/react-native-webrtc/react-native-webrtc

Signalling

 SIP.js - A simple, intuitive, and powerful JavaScript signaling library

 https://github.com/onsip/sip.js

•

•

•

•

•

•

•

•

Business Benefits

The pivotal point to be considered while choosing between React Native and

Native is platform dependence. In React Native, a single code is written for

Android and iOS, while Native needs di�erent codes for each platform. At the

same time, when the cost is brought to light, React Native is 35% more

cost-e�ective than Native. Apart from this, React Native has many open-source

libraries of pre-designed modules that accelerate the development process.

How react native is better than Native

06

With push notifications, the application is in use only when required. It implies

that an app doesn’t need to be up and running to see the notifications.

A smartphone user can see the notification even when their phone is locked or

app is not running.

How push notifications can help save battery

Even though embedding audio and video in the browser via WebRTC without

third-party plugins is exciting, it poses potential security breach threats.

getUserMedia, RTCPeerConnection, and RTCDataChannel are the few APIs

used by WebRTC to establish a connection between peers. TLS (Transport Layer

Security) is the standard for web encryption, taken into account for the aim of

such protocols as HTTPS. TLS is used for the reliable transport mechanism of

(TCP) Transport Control Protocol, but VoIP apps (and games, etc.) typically utilize

unreliable datagram transports such as UDP (User Datagram Protocol).

Since basic RTP does not hold any built-in security features, it is forbidden by

WebRTC specifications. WebRTC thus utilizes SRTP for the encryption of media

streams rather than DTLS. This is because SRTP is a simpler alternative to DTLS.

However, the actual SRTP key interaction is initially performed terminally with

DTLS-SRTP, enabling the detection of any MiTM (Man in The Middle) attacks.

Why use WebRTC over DTLS-SRTP

Saves a fortune
on application
development

Ensure stable
mobile app growth

Live and Hot
reloading

Code reuse and
pre-developed
components

Larger Developer
community

Ready-made
solutions and a

vibrant library

07

The open-source app is flexible and agile compared to proprietary software

since the code is open to all. Speed of accessibility is fast in open-source, and

the apps are cost-e�ective since no dedicated resources are required that

develop targeted applications’ code. In open-source, the apps can start small,

relying on the community codes, and can be scaled as needed. It is challenging

to adhere to security standards while following the development standards. Still,

the regular revision of open-source codes by expert developers and peers

makes it a robust practice and enhances the code most robustly.

In this whitepaper, we delved deeper into the open-source libraries that thrived

on top of WebRTC and React Native in sync with OpenSIPS to develop

softphones. Although this turns out to be a tiresome process, it becomes a bit

a�ordable with the latest technology. Cross-platform softphone applications

have made the calling experience seamless, and in this write-up, we have tried

to explain what approach to follow to develop it with OpenSIPS.

If you wish to develop a cross-platform softphone for your business, you can
contact us at sales@ecosmob.com. We can arrange a free consultation for you

and look into your requirements.

What are the advantages of using open-source
software instead of proprietary?

Summary

08

Platform and device
independence

Adapts to any
network condition

Open source
technology

Low latency delivery
and networking

Screen Sharing

Easy collaboration

Interioperability with
VoIP and video

Real-time services for
live communication

Seamless multi-user
video conferencing

Benifits of

Secure voice and
video calls

09

sales@ecosmob.com

MAIL US AT

INDIA USA
501-503, Binori B Square 1, Nr. Neptune House,
Ambli -Bopal Road, Ahmedabad-380058,
Gujarat, India.

300 SE 2nd Street, Suite 600
Ft. Lauderdale, Florida, USA 33301

1285 West Broadway, Suite 600,
Vancouver, BC, V6H 3X8

340 witch hazel avenue centurion
South Africa.

SOUTH AFRICA CANADA

PHONE

VISIT US

+1-303-997-3139 +91-7778842856

+1 (604) 900-8870 +27 0871353659

REACH US @

